The generator matrix 1 0 1 1 1 X^2+X+2 1 1 X 1 1 X^2+2 1 1 2 1 1 X^2+X 1 1 X^2 1 1 X+2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 X 1 1 0 X^2+2 X+2 X^2+X 0 1 X+1 X^2+X+2 X^2+1 1 X X^2+X+1 1 X^2+2 3 1 2 X+1 1 X^2+X X^2+3 1 X+2 X^2+X+3 1 X^2 1 1 0 X^2+X+2 X^2+2 X X+1 X^2+3 X^2+X+3 1 0 X^2+X+2 X^2+2 X X+3 X^2+3 X^2+X+3 1 2 2 2 1 X^2+X X^2+X X+2 X^2 X^2 X^2 1 X 1 1 0 0 X^2 X^2+2 2 X^2 X^2 X^2+2 X^2+2 2 0 2 X^2 0 X^2 0 X^2 0 2 2 X^2+2 X^2+2 X^2+2 2 2 X^2 0 X^2+2 2 X^2+2 0 X^2 X^2+2 2 X^2 0 X^2+2 0 X^2 2 2 0 X^2+2 2 X^2 X^2+2 0 X^2 2 X^2 X^2+2 X^2 X^2 2 generates a code of length 54 over Z4[X]/(X^3+2,2X) who´s minimum homogenous weight is 52. Homogenous weight enumerator: w(x)=1x^0+324x^52+120x^53+208x^54+48x^55+265x^56+24x^57+32x^58+1x^72+1x^80 The gray image is a code over GF(2) with n=432, k=10 and d=208. This code was found by Heurico 1.16 in 0.562 seconds.